Section 1.3 Continuity (Minimum Homework: 1, 3, 5, 7, 9, 11, 13, 17, 19, 25, 27)

We cover the concept of continuity at specific values of $x=a$ in this section.

Informally a function is NOT CONTINOUS (or we can say the function is discontinuous) at a value of $x=a$ if one of three things happens on the graph of the function for that value of $x=a$.

- 1) There is a hole in the graph of the function, and the function is undefined at that value of x.
- 2) There is a hole in the graph of the function at $x=a$ and the function is defined at the value of x.
- 3) There is a jump in the graph at the value of $x=a$.
- 4) There is a vertical asymptote at the value of $x=a$.

Case 1 example: The function has a HOLE at $x=2$ and the function IS NOT DEFINED at $x=2$ as there is not a solid circle above or below the hole.

We can say the following about the function graphed below:

- Is not continuous at $x=2$ Informal reason: there is a hole at $x=$ 2 and the function is undefined at $x=2$

Case 1 example: The function has a HOLE at $x=2$ and the function IS DEFINED at $x=2$ as there is a solid circle above the hole.

We can say the following about the function graphed below:

- Is not continuous at $x=2$: Informal reason, there is a hole at $x=$ 2 and the function is defined at $x=2$.

Case 3 example: The function has a JUMP at $x=4$
We can say the following about the function graphed below:

- Is not continuous (discontinuous) at $x=4$ Informal reason - there is a jump at $x=4$.

Case 4 example: The function has a VERTICAL ASYMPTOTE at $x=5$
We can say the following about the function graphed below:

- Is discontinuous at $x=5$, informal reason - there is an asymptote at $x=5$

Formally a function f is NOT CONTINOUS at a point $x=a$, when one or more of the following occurs.

- 1) The function f is NOT DEFINED at $x=a$

This happens in:
Case 1 ("unplugged hole")
Case 4 (vertical asymptote)

- 2) The limit at $x=a$ exists but the function value is not equal to limit value.
This happens in:
Case 2 ("plugged hole")
- 3) The function is defined at $x=a$, but the two-sided limit does not exist at $x=a$.
This happens in:
Case 3 (Jump)

We say a function f is continuous everywhere if it does not have any of the three:

- Hole
- Jump
- Vertical asymptote

This is an example of a function that is continuous everywhere:

Example: Determine all values of $x=a$ where the function $f(x)$ is not continuous.
$f(x)=\frac{x^{2}+6 x-7}{x-1}$
The function is not defined when the denominator equals 0 .
Solve $x-1=0$
The function is NOT CONTINOUS at $x=1$
Informal reason: There is a hole in the graph of the function at $x=1$ and the function is undefined at $x=1$

Graphs of fractions either have a hole or a vertical asymptote for values that make the denominator 0 .

- Hole - for the value of x that makes the denominator 0 when the factor CANCELS with the numerator
- Vertical asymptote - for the value of x that makes the denominator 0 when the factor DOES NOT CANCEL with the numerator
$f(x)=\frac{x^{2}+6 x-7}{x-1}=\frac{(x+7)(x-1)}{x-1}=x+7(x-$
1 cancels, so there is a hole at $x=1$)

Example: Determine all values of $x=a$ where the function $f(x)$ is not continuous.
$f(x)=\frac{6}{x^{2}+5 x-14}$

The function is not defined when the denominator equals 0 .
Solve $x^{2}+5 x-14=0$
$(x+7)(x-2)=0$
$x=-7,2$
The function is NOT CONTINOUS at $x=-7,2$

Informal reason: There are asymptotes of the graph of the function at $x=-7,2$

There are vertical asymptotes for both values of x since the factors $(x+7)$ and $(x-2)$ do not cancel with the numerator.

Example: Determine all values of $x=a$ where the function $f(x)$ is not continuous.
$f(x)=\left\{\begin{array}{l}x-5, \text { if } x \leq 5 \\ 2 x-4, \text { if } x>5\end{array}\right.$
We need to figure out if there is or is not a jump at $x=5$.
Plug $x=5$ into both functions. If the values do not equal, there is a jump at the value of x.

Top function: $f(5)=5-5=0$
Bottom function: $f(5)=2(5)-4=6$
The function has a hole at $x=5$
The function is NOT CONTINOUS at $x=5$, informal reason - there is a jump in the graph at $x=5$.

Example: Determine all values of $x=a$ where the function $f(x)$ is not continuous.
$f(x)=3 x-12$

The function is CONTINOUS everywhere. Unfortunately, there is no Algebra to show this.

Basically these features in an equation can make a function discontinuous at a value of $x=a$.

Holes - denominator equals to zero, and denominator cancels with numerator

Asymptote - denominator equals to zero, and denominator does not cancel with numerator

Jump - function needs to be defined piecewise and the values don't match up at the value of x.

Example: Determine all values of $x=a$ where the function $f(x)$ is not continuous.
$f(x)=\left\{\begin{array}{l}x-3, \text { if } x \leq 6 \\ 2 x-9, \text { if } x>6\end{array}\right.$

We need to figure out if there is or is not a jump at $x=6$.

Plug $x=6$ into both functions. If the values do not equal, there is a jump at the value of x.

Top function: $f(6)=6-3=3$
Bottom function: $f(6)=2(6)-9=3$

The function does not have a hole at $x=6$ as the values are equal.

Each piece of the function is a polynomial and polynomials are continuous everywhere.

The function is CONTINOUS everywhere.
\#1-10: Find all values of $\mathrm{x}=\mathrm{a}$ where the function is discontinuous. State the informal rule that makes the function discontinuous for the value of $x=a$.
1)

2)

Answer: Not continuous at $x=8$, (Informal reason: There is a hole in the graph of the function at $x=8$ and the function is undefined at $x=$ 8)
3)

4)

Answer: Not continuous at $x=6$, (Informal reason: There is a hole in the graph of the function at $x=6$ and the function is defined at $x=6$)
5)

6)

The function is discontinuous at $x=4$ and $x=10$ Informal reason: There is a "jump" at $x=4$.
There is a hole at $x=10$ and the function is undefined at $x=10$
7)

8)

The function in discontinuous at $x=-10$ and $x=5$ Informal reason - There are vertical asymptotes at both $x=$ -10 and $x=5$
9)

10)

The function is discontinuous at $x=2,4,5$
Informal reason:
There is a hole in the graph at $x=2$ and the function is defined at $x=2$.

There is a vertical asymptote at $x=4$. There is a jump at $x=5$.
\#11-30: Find all values of $x=a$ where the function is discontinuous. State the informal reason for each point of discontinuity. State if the function is continuous everywhere.
11) $f(x)=\frac{x-3}{x+4}$
12) $f(x)=\frac{x+1}{x-5}$

Answer: The function is discontinuous at $x=5$
Informal reason: There is a vertical asymptote at $x=5$.
13) $f(x)=\frac{x^{2}+7 x+12}{x+3}$
14) $f(x)=f(x)=\frac{x^{2}+3 x+2}{x+1}$

Answer: The function is discontinuous at $x=-1$
Informal reason: There is a hole at $x=-1$
and the function is not defined at $x=-1$.
15) $f(x)=\frac{x^{2}-4}{x+2}$
16) $f(x)=\frac{x^{2}-9}{x+3}$

Answer: The function is discontinuous at $x=-3$
Informal reason: There is a hole at $x=-3$
and the function is not defined at $x=-3$.
17) $f(x)=\frac{5}{x^{2}+3 x+2}$
18) $f(x)=\frac{7}{x^{2}-2 x-3}$

The function in discontinuous at $x=-1$ and $x=2$
Informal reason - There are vertical asymptotes at both $x=$ -1 and $x=2$
19) $f(x)=2 x-6$
20) $f(x)=3 x-2$

Answer: The function is continuous everywhere.
21) $f(x)=x^{2}+6 x-7$
22) $f(x)=x^{2}-4 x-5$

Answer: The function is continuous everywhere.
23) $f(x)=\left\{\begin{array}{c}x+3, \text { if } x \leq 6 \\ 2 x, \text { if } x>6\end{array}\right.$
24) $f(x)=\left\{\begin{array}{c}6 x, \text { if } x \leq 2 \\ 2 x+1, \text { if } x>2\end{array}\right.$

Answer: The function is not continuous at $x=2$.
Informal reason: There is a jump in the graph at $x=2$.
25) $f(x)=\left\{\begin{array}{l}x-3, \text { if } x \leq 5 \\ 2 x-9, \text { if } x>5\end{array}\right.$
26) $f(x)=\left\{\begin{array}{l}x-3, \text { if } x \leq 4 \\ 2 x-9, \text { if } x>4\end{array}\right.$

Answer: The function is not continuous at $x=4$.
Informal reason: There is a jump in the graph at $x=4$.
27) $f(x)=\left\{\begin{array}{c}x+6, \text { if } x \leq 6 \\ 2 x, \text { if } x>6\end{array}\right.$
28) $f(x)=\left\{\begin{array}{c}6 x, \text { if } x \leq 2 \\ 2 x+8, \text { if } x>2\end{array}\right.$

Answer: The function is continuous everywhere.
29) $f(x)=\left\{\begin{array}{l}x-3, \text { if } x \leq 5 \\ 2 x-8, \text { if } x>5\end{array}\right.$
30) $f(x)=\left\{\begin{array}{l}x-3, \text { if } x \leq 4 \\ 2 x-7, \text { if } x>4\end{array}\right.$

Answer: The function is continuous everywhere.

